Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920244

RESUMO

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Assuntos
Antineoplásicos , Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Animais , Bovinos , Camundongos , Ratos , Criptosporidiose/tratamento farmacológico , Antiprotozoários/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Oocistos
2.
Steroids ; 190: 109150, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511323

RESUMO

Δ6-Methyltestosterone was reported as the main active ingredient of the purported "dietary supplement" Jungle Warfare. This compound is structurally similar to 17α-methyltestosterone, containing an additional Δ6 double bond, and is reported to possess notable androgenic activity, raising concerns over the potential for abuse of Jungle Warfare in sport. The in vivo metabolism of Δ6-methyltestosterone in greyhounds was investigated. Urinary phase I (unconjugated) and phase II (glucuronide) metabolites were detected following oral administration using liquid chromatography-mass spectrometry. No phase II sulfate metabolites were detected. The major phase I metabolite was confirmed as 16α,17ß-dihydroxy-17α-methylandrosta-4,6-dien-3-one by comparison with a synthetically-derived reference material. Minor amounts of the parent drug were also confirmed. Glucuronide conjugated metabolites were also observed, but were found to be resistant to hydrolysis using the Escherichia coli ß-glucuronidase enzyme. Qualitative excretion profiles, limits of detection, and extraction recoveries were determined for the parent drug and the major phase I metabolite. These results provide a method for the detection of Jungle Warfare abuse in greyhounds suitable for incorporation into routine screening methods conducted by anti-doping laboratories.


Assuntos
Anabolizantes , Doping nos Esportes , Animais , Cães , Metiltestosterona/análise , Metiltestosterona/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucuronídeos , Androgênios , Espectrometria de Massas , Anabolizantes/metabolismo , Detecção do Abuso de Substâncias/métodos
3.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36191061

RESUMO

Steroid sulfate esters are important metabolites for anti-doping efforts in sports, pathology and research. Analysis of these metabolites is facilitated by hydrolysis using either acid or enzymatic catalysis. Although enzymatic hydrolysis is preferred for operating at neutral pH, no known enzyme is capable of hydrolyzing all steroid sulfate metabolites. Pseudomonas aeruginosa arylsulfatase (PaS) is ideal for the hydrolysis of ß-configured steroid sulfates but like other known class I sulfatases it is inefficient at hydrolyzing α-configured steroid sulfates. We have used directed evolution with liquid chromatography mass spectrometry screening to find variants capable of hydrolyzing a α-configured steroid sulfate: etiocholanolone sulfate (ECS). After targeting two regions of PaS, four residues were identified and optimized to yield a final variant with a total of seven mutations (DRN-PaS) capable of hydrolyzing ECS ~80 times faster than the best PaS variant previously available. This DRN-PaS also shows improved activity for other α-configured steroid sulfates. Simultaneous mutagenesis was essential to obtain DRN-PaS due to complementarity between targeted residues.


Assuntos
Arilsulfatases , Pseudomonas aeruginosa , Arilsulfatases/genética , Arilsulfatases/química , Arilsulfatases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Hidrólise , Sulfatases/genética , Sulfatases/química , Sulfatos/química , Sulfatos/metabolismo , Esteroides
4.
Drug Test Anal ; 13(10): 1749-1757, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254454

RESUMO

Samples of the 'dietary supplement' Furazadrol sourced through the internet have been reported to contain the designer anabolic androgenic steroids [1',2']isoxazolo[4',5':2,3]-5α-androstan-17ß-ol (furazadrol F) and [1',2']isoxazolo[4',3':2,3]-5α-androstan-17ß-ol (isofurazadrol IF). These steroids contain an isoxazole fused to the A-ring and were designed to offer anabolic activity while evading detection, raising concerns over the potential for abuse of this preparation in sports. The metabolism of Furazadrol (F:IF, 10:1) was studied by in vivo methods in greyhounds. Urinary phase II Furazadrol metabolites were detected as glucuronides after a controlled administration. These phase II metabolites were subjected to enzymatic hydrolysis by Escherichia coli ß-glucuronidase to afford the corresponding phase I metabolites. Using a library of synthetically derived reference materials, the identities of seven urinary Furazadrol metabolites were confirmed. Major confirmed metabolites were isofurazadrol IF, 4α-hydroxyfurazadrol 4α-HF and 16α-hydroxy oxidised furazadrol 16α-HOF, whereas the minor confirmed metabolites were furazadrol F, 4ß-hydroxyfurazadrol 4ß-HF, 16ß-hydroxyfurazadrol 16ß-HF and 16ß-hydroxy oxidised furazadrol 16ß-HOF. One major hydroxyfurazadrol and two dihydroxyfurazadrol metabolites remained unidentified. Qualitative excretion profiles, limits of detection and extraction recoveries were established for furazadrol F and major confirmed metabolites. These investigations identify the key urinary metabolites of Furazadrol following oral administration, which can be incorporated into routine screening by anti-doping laboratories to aid the regulation of greyhound racing.


Assuntos
Anabolizantes/metabolismo , Androstanos/metabolismo , Doping nos Esportes/prevenção & controle , Anabolizantes/urina , Androstanos/urina , Animais , Cães , Feminino , Limite de Detecção , Masculino , Detecção do Abuso de Substâncias/métodos , Detecção do Abuso de Substâncias/veterinária
5.
Steroids ; 143: 25-40, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513322

RESUMO

Doubly or bisconjugated steroid metabolites have long been known as minor components of the steroid profile that have traditionally been studied by laborious and indirect fractionation, hydrolysis and gas chromatography-mass spectrometry (GC-MS) analysis. Recently, the synthesis and characterisation of steroid bis(sulfate) (aka disulfate or bis-sulfate) reference materials enabled the liquid chromatography-tandem mass spectrometry (LC-MS/MS) study of this metabolite class and the development of a constant ion loss (CIL) scan method for the direct and untargeted detection of steroid bis(sulfate) metabolites. Methods for the direct LC-MS/MS detection of other bisconjugated steroids, such as steroid bisglucuronide and mixed steroid sulfate glucuronide metabolites, have great potential to reveal a more complete picture of the steroid profile. However, access to steroid bisglucuronide or sulfate glucuronide reference materials necessary for LC-MS/MS method development, metabolite identification or quantification is severely limited. In this work, ten steroid bisglucuronide and ten steroid sulfate glucuronide reference materials were synthesised through an ordered combination of chemical sulfation and/or enzymatic glucuronylation reactions. All compounds were purified and characterised using NMR and MS methods. Chemistry for the preparation of stable isotope labelled steroid {13C6}-glucuronide internal standards has also been developed and applied to the preparation of two selectively mono-labelled steroid bisglucuronide reference materials used to characterise more completely MS fragmentation pathways. The electrospray ionisation and fragmentation of the bisconjugated steroid reference materials has been studied. Preliminary targeted ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis of the reference materials prepared revealed the presence of three steroid sulfate glucuronides as endogenous human urinary metabolites.


Assuntos
Glucuronídeos/química , Esteroides/síntese química , Esteroides/metabolismo , Sulfatos/química , Urinálise/normas , Técnicas de Química Sintética , Humanos , Padrões de Referência , Esteroides/química , Esteroides/urina
6.
J Mol Endocrinol ; 61(2): M1-M12, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29459491

RESUMO

The steroid disulfates (aka bis-sulfates) are a significant but minor fraction of the urinary steroid metabolome that have not been widely studied because major components are not hydrolyzed by the commercial sulfatases commonly used in steroid metabolomics. In early studies, conjugate fractionation followed by hydrolysis using acidified solvent (solvolysis) was used for the indirect detection of this fraction by GC-MS. This paper describes the application of a specific LC-MS/MS method for the direct identification of disulfates in urine, and their use as markers for the prenatal diagnosis of disorders causing reduced estriol production: STSD (steroid sulfatase deficiency), SLOS (Smith-Lemli-Opitz syndrome) and PORD (P450 oxidoreductase deficiency). Disulfates were detected by monitoring a constant ion loss (CIL) from the molecular di-anion. While focused on disulfates, our methodology included an analysis of intact steroid glucuronides and monosulfates because steroidogenic disorder diagnosis usually requires an examination of the complete steroid profile. In the disorders studied, a few individual steroids (as disulfates) were found particularly informative: pregn-5-ene-3ß,20S-diol, pregn-5-ene-3ß,21-diol (STSD, neonatal PORD) and 5α-pregnane-3ß,20S-diol (pregnancy PORD). Authentic steroid disulfates were synthesized for use in this study as aid to characterization. Tentative identification of 5ξ-pregn-7-ene-3ξ,20S-diol and 5ξ-pregn-7-ene-3ξ,17,20S-triol disulfates was also obtained in samples from SLOS affected pregnancies. Seven ratios between the detected metabolites were applied to distinguish the three selected disorders from control samples. Our results show the potential of the direct detection of steroid conjugates in the diagnosis of pathologies related with steroid biosynthesis.


Assuntos
Cromatografia Líquida/métodos , Diagnóstico Pré-Natal/métodos , Esteroides/biossíntese , Sulfatos/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...